1. | Stochastic numerical analysis and deep learning (in Japanese)
Toshihiro Yamada SUGAKU seminar 2024 |
---|
No. | Name of subject/Conference Name | Year | Site |
---|---|---|---|
1. | Remark on expansion for utility indifference pricing problems(JSIAM) |
Holding date :
Presentation date : 2024.3.5 |
Nagaoka University of Technology |
2. | Neural Network SDE Simulator(JAFEE) |
Holding date :
Presentation date : 2024.2 |
University of Tokyo |
3. | On some approaches to weak approximation of SDEs(Séminaire Bachelier Paris (Institut Henri Poincaré)) |
Holding date :
Presentation date : 2023.12.1 |
Institut Henri Poincaré (Paris, France) |
4. | A Risk Analysis for the Space Industry(THE 54th IKKYOSAI (Hitotsubashi University)) |
Holding date :
Presentation date : 2023.11.25 |
Hitotsubashi University |
5. | Some approaches to computing integrals of certain functionals on path space(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2023.10.27 |
Hitotsubashi University |
6. | Numerical methods for solving high dimensional PDEs via deep learning(Research on High-performance Scientific Computing in a New Era (RIMS, Kyoto University)) |
Holding date :
2023.10.18
- 2023.10.20 Presentation date : 2023.10.19 |
Kyoto University |
7. | New deep learning-based algorithms for high-dimensional Bermudan option pricing(ICIAM2023 (Waseda University)) |
Holding date :
Presentation date : 2023.8.24 |
Waseda University |
8. | Extended Milstein scheme for hypoelliptic diffusions(ICIAM2023 (Waseda University)) |
Holding date :
Presentation date : 2023.8.24 |
Waseda University |
9. | Deep learning and probabilistic methods for solving high-dimensional partial differential equations and applications(Numerical Analysis Seminar (UTNAS) (University of Tokyo)) |
Holding date :
Presentation date : 2023.6 |
The University of Tokyo |
10. | Deep learning and probabilistic methods for solving high-dimensional nonlinear PDEs and applications(SCI’23 (Kyoto)) |
Holding date :
Presentation date : 2023.5 |
Kyoto |
11. | Total variation bound for Milstein scheme without iterated integrals(Osaka-UCL Mini-Workshop on Stochastics, Numerics and Risk (Osaka University)) |
Holding date :
Presentation date : 2023.2 |
Osaka University |
12. | Deep learning and probabilistic approximation schemes for solving high-dimensional PDEs(Workshop on Stochastic processes and applications (National Institute of Informatics)) |
Holding date :
Presentation date : 2023.1 |
National Institute of Informatics |
13. | Asymptotic expansion and deep neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with nonlinear coefficients(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2022.11.25 |
Hitotsubashi University |
14. | A discretization method of stochastic differential equation and its applications(Colloquium, Department of Mathematics, Kyoto University) |
Holding date :
Presentation date : 2022.11.9 |
Kyoto University |
15. | Solving nonlinear pricing problems in high dimension using deep learning and high order discretization schemes(Ajou Workshop on Financial Engineering (Ajou University)) |
Holding date :
Presentation date : 2022.9 |
Ajou University |
16. | Total variation bounds for Milstein scheme and Euler-Maruyama scheme: application to mathematical finance(1st Seoul-London Workshop on Mathematical Finance (Seoul National University)) |
Holding date :
Presentation date : 2022.9 |
Seoul National University |
17. | A deep learning-based high-order operator splitting method for high-dimensional nonlinear parabolic PDEs via Malliavin calculus: application to CVA computation(2022 IEEE Computational Intelligence for Financial Engineering and Economics (Helsinki, Finland)) |
Holding date :
Presentation date : 2022.5 |
Helsinki |
18. | Deep learning and probabilistic methods for solving high-dimensional linear/nonlinear parabolic PDEs(One World: Stochastic Numerics and Inverse Problems (United Kingdom)) |
Holding date :
Presentation date : 2021.12.15 |
United Kingdom |
19. | Deep Asymptotic Expansion: Application to Financial Mathematics(IEEE CSDE 2021 (Queensland, Brisbane, Australia)) |
Holding date :
Presentation date : 2021.12.8 |
Australia |
20. | A Gaussian Kusuoka approximation and application to deep learning-based numerical method for high-dimensional PDEs(4th KAFE-JAFEE International Symposium on Financial Engineering (Tokyo)) |
Holding date :
Presentation date : 2021.8.21 |
Tokyo |
21. | Machine learning and probabilistic methods for solving high-dimensional partial differential equations(Osaka University Center for Mathematical Modeling and Data Science (Osaka University)) |
Holding date :
Presentation date : 2021.1.22 |
Osaka University |
22. | Operator splitting around Euler-Maruyama scheme and high order discretization of heat kernels: application to finance(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2020.10.23 |
Hitotsubashi University |
23. | Higher order weak approximation for SDEs and BSDEs of McKean-Vlasov type(Ritsumeikan Math-Fin Seminar) |
Holding date :
Presentation date : 2020.7.23 |
Ritsumeikan University |
24. | High order weak approximation for SDEs and automatic differentiation: application to BSDEs(Osaka University Nakanoshima Workshop) |
Holding date :
Presentation date : 2019.11.28 |
Osaka University |
25. | Numerical scheme for SDEs: A discretization of density(Math Finance Seminar) |
Holding date :
Presentation date : 2019.11.22 |
Tokyo |
26. | An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: application to BSDE(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2019.11.15 |
Hitotsubashi University |
27. | Second order discretization of Bismut-Elworthy-Li formula and applications(Stochastic Processes and Related Topics) |
Holding date :
Presentation date : 2019.2.21 |
Kansai University |
28. | Second order discretization of Bismut-Elworthy-Li formula: application to sensitivity analysis(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2018.12.14 |
Hitotsubashi University |
29. | Higher order discretization methods using Malliavin Monte Carlo and Brownian Markov chain without Levy area simulation(WORKSHOP ON "MATHEMATICAL FINANCE AND RELATED ISSUES") |
Holding date :
Presentation date : 2018.3.12 |
Osaka University |
30. | Weak Milstein scheme without commutativity condition and its sharp asymptotic error bound(一橋大学経済統計ワークショップ) |
Holding date :
Presentation date : 2017.11.17 |
Hitotsubashi University |
31. | A second order discretization method for the Delta(Osaka-UCL Workshop on Stochastics, Numerics and Risk (Osaka University)) |
Holding date :
Presentation date : 2017.3.30 |
Osaka University |
32. | A general formula for weak approximation with multidimensional Malliavin weights: application to option pricing(Hitotsubashi University) |
Holding date :
Presentation date : 2016.10.14 |
Hitotsubashi University |
33. | On higher order weak approximation with Malliavin weights(Hitotsubashi University ICS FS (Faculty Seminar)) |
Holding date :
Presentation date : 2016.7.4 |
International Corporate Strategy, Hitotsubashi University |
34. | A weak approximation of SDEs: application to computational finance(Joint International Research Open (UK)) |
Holding date :
Presentation date : 2016.3.1 |
University of Liverpool, United Kingdom |
35. | A weak approximation of SDEs: application to computational finance(Winter Workshop on Operations Research, Finance and Mathematics, 2016) |
Holding date :
Presentation date : 2016.2.17 |
Hokkaido |
36. | A weak approximation scheme for SDEs and applications to finance(Stochastic Methods in Finance, Insurance and Statistics (Australia)) |
Holding date :
Presentation date : 2015.12.10 |
Shoal Bay, Australia |
37. | A weak approximation of SDEs and its related topics(Ritsumeikan Math-Fin Seminar) |
Holding date :
Presentation date : 2015.9.4 |
Ritsumeikan University |
38. | Discretization of vol-of-vol expansion(Operations Research Society of Japan) |
Holding date :
Presentation date : 2015.8.5 |
Wakkanai, Hokkaido |
39. | A new second order weak approximation of SDEs with application to finance(Workshop, Hitotsubashi University) |
Holding date :
Presentation date : 2015.7.10 |
Hitotsubashi University |
40. | A new second order weak approximation of SDEs(慶應義塾大学計量経済学ワークショップ) |
Holding date :
Presentation date : 2015.6.23 |
Keio University |
41. | Weak approximation with asymptotic expansion: Application to computational finance(Yokohama National University) |
Holding date :
Presentation date : 2015.6.4 |
Yokohama National University |
42. | Asymptotics for computational finance(NUS-U Tokyo Workshop on Quantitative Finance) |
Holding date :
Presentation date : 2014.9.26 |
The University of Tokyo |
43. | Asymptotic Methods for Backward SDEs and Nonlinear Pricing(Mathematical Modeling and Data Science seminar (Center for the Study of Finance and Insurance, Osaka University)) |
Holding date :
Presentation date : 2014.5.30 |
Osaka University |
44. | Operator splitting using asymptotic expansion and application to computational finance (in Japanese)(日本応用数理学会研究部会連合発表会) |
Holding date :
Presentation date : 2014.3.19 |
Kyoto University |
45. | Asymptotic Methods for Computational Finance(大阪大学中之島ワークショップ (大阪大学)) |
Holding date :
Presentation date : 2013.12.6 |
Osaka University |
46. | Asymptotic Expansion for Forward-Backward SDEs(NUS-U Tokyo Workshop on Quantitative Finance) |
Holding date :
Presentation date : 2013.9.27 |
National University of Singapore |
47. | Asymptotic expansion for forward-backward SDEs and numerical method for computing CVA (in Japanese)(日本応用数理学会2013年度年会) |
Holding date :
Presentation date : 2013.9.10 |
Fukuoka |
48. | Asymptotic Expansion for Forward-Backward SDEs and CVA(39th JAFEE Meeting (Japanese Association of Financial Econometrics and Engineering)) |
Holding date :
Presentation date : 2013.8.4 |
Meiji University |
49. | Asymptotic Formulas in Local and Stochastic Volatility Models(JAFEE(日本金融・証券計量・工学学会)デリバティブ部会) |
Holding date :
Presentation date : 2013.3.2 |
Tokyo |
50. | A closed-form approximation method for computational finance(立命館大学数理科学研究科解析セミナー) |
Holding date :
Presentation date : 2013.1.18 |
Ritsumeikan University |
51. | Numerical approximation for forward-backward SDEs via asymptotic expansion (in Japanese)(数理ファイナンス合宿型セミナー) |
Holding date :
Presentation date : 2012.11.3 |
Tokyo |
52. | On expansion formula for barrier option prices (in Japanese)(日本応用数理学会2012年度年会) |
Holding date :
Presentation date : 2012.8.30 |
Hokkaido |
53. | Strong approximation of SDEs using asymptotic expansion and multilevel Monte Carlo simulation (in Japanese)(日本応用数理学会2012年度年会) |
Holding date :
Presentation date : 2012.8.30 |
Hokkaido |
54. | An Asymptotic Expansion for Solutions of Cauchy-Dirichlet Problem for Second Order Parabolic PDEs and its Application to Pricing Barrier Options(37th JAFEE Meeting (Japanese Association of Financial Econometrics and Engineering)) |
Holding date :
Presentation date : 2012.8.4 |
Seijyo University |
No. | Award name | Year |
---|---|---|
1. | JAFEE BEST PAPER AWARD | 2016.1 |
No. | Research subject | Research item(Awarding organization, System name) | Year |
---|---|---|---|
1. | New computational method for high dimensional PDEs using Malliavin calculus and deep learning
|
Sakigake (PRESTO)
( Awarding organization: Japan Science and Technology Agency (JST) ) |
2020.11 - 2024.3 |
2. | A new automatic differentiation and its application to computational finance
|
Grant-in-Aid for Young Scientists
( System name: Grants-in-Aid for Scientific Research ) |
2019.4 - 2021.3 |
3. | Quantitative risk measurement in insurance and finance
|
( Awarding organization: Tokio Marine Kagami Memorial Foundation System name: 社会科学研究助成 ) |
2018.1 - 2019.3 |
4. | New higher order discretization method with Malliavin calculus
|
Challenging Exploratory Research
( System name: Grants-in-Aid for Scientific Research ) |
2016.4 - 2019.3 |