1. |
Non-compactness results for the spinorial Yamabe-type problems with non-smooth geometric data (Peer-reviewed) Takeshi Isobe, Yannick Sire, Tian Xu
Journal of Functional Analysis Vol.287,pp.110472 2024.8
|
2. |
Morse homology for perturbed Dirac-harmonic maps into flat tori (Peer-reviewed) Takeshi Isobe
Journal of Topology and Analysis 2024.2
|
3. |
Solutions of spinorial Yamabe-type problems on 𝑆^{𝑚}: Perturbations and applications (Peer-reviewed) Takeshi Isobe, Tian Xu
Transactions of the American Mathematical Society Vol.376,No.9,pp.6397-6446 2023.6
|
4. |
Morse–Floer theory for superquadratic Dirac-geodesics (Peer-reviewed) Takeshi Isobe, Ali Maalaoui
Calculus of Variations and Partial Differential Equations Vol.61,No.6 2022.12
|
5. |
Asymptotically linear Dirac-harmonic maps into flat tori (Peer-reviewed) 磯部 健志
Differential Geometry and its Applications Vol.75 2021.4
|
6. |
Morse homology for asymptotically linear Dirac equations on compact manifolds (Peer-reviewed) 磯部 健志
Journal of Differential Equations Vol.269,No.6,pp.5062-5109 2020.9
|
7. |
On the multiple existence of superquadratic Dirac-harmonic maps into flat tori (Peer-reviewed) 磯部 健志
Calculus of Variations and Partial Differential Equations Vol.58,No.4,pp.126- 2019.8
|
8. |
Morse-Floer theory for superquadratic Dirac equations, I: relative Morse indices and compactness (Peer-reviewed) 磯部 健志
Journal of Fixed point theory and applications Vol.19,No.2,pp.1315-1363 2017.6
|
9. |
Morse-Floer theory for superquadratic Dirac equations, II: construction and computation of Morse-Floer homology (Peer-reviewed) 磯部 健志
Journal of Fixed point theory and applications Vol.19,No.2,pp.1365-1425 2017.6
|
10. |
Spinorial Yamabe Type Equations on S-3 via Conley Index (Peer-reviewed) Takeshi Isobe
ADVANCED NONLINEAR STUDIES Vol.15,No.1,pp.39-60 2015.2
|
11. |
On superquadratic Dirac equations on compact spin manifolds
磯部 健志
数理解析研究所講究録(Geometry of solutions of partial differential equations 研究集会報告集) Vol.1896,No.1896,pp.79-97 2014.5
|
12. |
Sobolev bundles with abelian structure groups (Peer-reviewed) Takeshi Isobe
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Vol.49,No.1-2,pp.77-102 2014.1
|
13. |
A perturbation method for spinorial Yamabe type equations on Sm and its application (Peer-reviewed) Takeshi Isobe
Mathematische Annalen Vol.355,No.4,pp.1255-1299 2013
|
14. |
Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. I (Peer-reviewed) Takeshi Isobe, Antonella Marini
JOURNAL OF MATHEMATICAL PHYSICS Vol.53,No.6,pp.063706- 2012.6
|
15. |
Small coupling limit and multiple solutions to the Dirichlet problem for Yang-Mills connections in four dimensions. I (Peer-reviewed) Takeshi Isobe, Antonella Marini
JOURNAL OF MATHEMATICAL PHYSICS Vol.53,No.6,pp.063707- 2012.6
|
16. |
On the existence of nonlinear Dirac-geodesics on compact manifolds (Peer-reviewed) Takeshi Isobe
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Vol.43,No.1-2,pp.83-121 2012.1
|
17. |
Existence results for solutions to nonlinear Dirac equations on compact spin manifolds (Peer-reviewed) Takeshi Isobe
MANUSCRIPTA MATHEMATICA Vol.135,No.3-4,pp.329-360 2011.7
|
18. |
Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds (Peer-reviewed) Takeshi Isobe
JOURNAL OF FUNCTIONAL ANALYSIS Vol.260,No.1,pp.253-307 2011.1
|
19. |
Regularity and energy quantization for the Yang-Mills-Dirac equations on 4-manifolds (Peer-reviewed) Takeshi Isobe
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS Vol.28,No.4,pp.359-375 2010.8
|
20. |
Topological and analytical properties of Sobolev bundles. II. Higher dimensional cases (Peer-reviewed) Takeshi Isobe
REVISTA MATEMATICA IBEROAMERICANA Vol.26,No.3,pp.729-798 2010
|
21. |
Topological and analytical properties of Sobolev bundles, I: The critical case (Peer-reviewed) Takeshi Isobe
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY Vol.35,No.3,pp.277-337 2009.5
|
22. |
A regularity result for a class of degenerate Yang-Mills connections in critical dimensions (Peer-reviewed) Takeshi Isobe
FORUM MATHEMATICUM Vol.20,No.6,pp.1109-1139 2008.11
|
23. |
On a minimizing property of the Hopf soliton in the Faddeev-Skyrme model (Peer-reviewed) Takeshi Isobe
REVIEWS IN MATHEMATICAL PHYSICS Vol.20,No.7,pp.765-786 2008.8
|
24. |
Topology of Sobolev bundles
磯部 健志
数理解析研究所講究録(変分問題とその周辺 研究集会報告集) Vol.1528,No.1528,pp.104-116 2007.1
|
25. |
On global singularities of Sobolev mappings (Peer-reviewed) T Isobe
MATHEMATISCHE ZEITSCHRIFT Vol.252,No.4,pp.691-730 2006.4
|
26. |
Obstruction theory for the approximation and the deformation problems for Sobolev mappings (Peer-reviewed) T Isobe
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY Vol.27,No.4,pp.299-332 2005.6
|
27. |
Multiple solutions for the Dirichlet problem for H-systems with small H (Peer-reviewed) T Isobe
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS Vol.6,No.4,pp.579-600 2004.8
|
28. |
Multiple solutions for the Dirichlet problem for <I>H</I>-systems (Peer-reviewed) 磯部 健志
数理解析研究所講究録(変分問題とその周辺 研究集会報告集) No.1347,pp.55-72 2003.11
|
29. |
Obstructions to the extension problem of Sobolev mappings (Peer-reviewed) 磯部 健志
Topological Methods in Nonlinear Analysis Vol.21,No.2,pp.345-368 2003.6
|
30. |
On the asymptotic analysis of <I>H</I>-systems. II. The construction of large solutions (Peer-reviewed) 磯部 健志
Advances in Differential Equations Vol.6,No.6,pp.641-700 2001.11
|
31. |
On the asymptotic analysis of <I>H</I>-systems. I. Asymptotic behavior of large solutions (Peer-reviewed) 磯部 健志
Advances in Differential Equations Vol.6,No.5,pp.513-546 2001.11
|
32. |
On the asymptotic behavior of the solutions of the Landau-Lifshitz equation (Peer-reviewed) 磯部 健志
Advances in Differential Equations Vol.5,No.7-9,pp.1033-1090 2000.11
|
33. |
On the construction of solutions of the Landau-Lifshitz equation (Peer-reviewed) 磯部 健志
Differential and Integral Equations Vol.13,No.1-3,pp.159-188 2000.3
|
34. |
Classification of blow-up points and multiplicity of solutions for H-systems (Peer-reviewed) T Isobe
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Vol.25,No.7-8,pp.1259-1325 2000
|
35. |
Sobolev写像の近似問題と幾つかの性質について
磯部 健志
数理解析研究所講究録(変分問題とその周辺 研究集会報告集) Vol.1076,No.1076,pp.16-26 1999.2
|
36. |
Regularity of harmonic maps into a static Lorentzian manifold (Peer-reviewed) 磯部 健志
Journal of Geometric Analysis Vol.8,No.3,pp.447-463 1998.9
|
37. |
Energy estimate, energy gap phenomenon, and relaxed energy for Yang-Mills functional (Peer-reviewed) 磯部 健志
Journal of Geometric Analysis Vol.8,No.1,pp.43-64 1998.1
|
38. |
Non-existence and uniqueness results for boundary value problems for Yang-Mills connections (Peer-reviewed) T Isobe
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Vol.125,No.6,pp.1737-1744 1997.6
|
39. |
On topologically distinct solutions of the Dirichlet problem for Yang-Mills connections (Peer-reviewed) T Isobe, A Marini
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Vol.5,No.4,pp.345-358 1997.5
|
40. |
Optimal regularity of harmonic maps from a Riemannian manifold into a static Lorentzian manifold
T Isobe
PACIFIC JOURNAL OF MATHEMATICS Vol.178,No.1,pp.71-93 1997.3
|
41. |
Some new properties of Sobolev mappings: Intersection theoretical approach (Peer-reviewed) T Isobe
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS Vol.127,No.2,pp.337-358 1997
|
42. |
A free boundary value problem of nematic liquid crystals with variable degree of orientation (Peer-reviewed) T Isobe
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Vol.26,No.2,pp.149-169 1996.1
|
43. |
Relaxed Yang-Mills functional over 4-manifolds (Peer-reviewed) 磯部 健志
Topological Methods in Nonlinear Analysis Vol.6,No.2,pp.235-253 1995.12
|
44. |
Energy Gap Phenomenon and the Existence of Infinitely Many Weakly Harmonic Maps for the Dirichlet Problem (Peer-reviewed) Takeshi Isobe
Journal of Functional Analysis Vol.129,No.2,pp.243-267 1995.5
|
45. |
CONVERGENCE RESULT FOR THE WEAK SOLUTIONS OF NONLINEAR ELLIPTIC-SYSTEMS (Peer-reviewed) T ISOBE
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Vol.24,No.8,pp.1247-1259 1995.4
|
46. |
Characterization of the strong closure of C∞(B4; S2) in W1, p (B4; S2) (16 5 ≤ p < 4) (Peer-reviewed) Takeshi Isobe
Journal of Mathematical Analysis and Applications Vol.190,No.2,pp.361-372 1995.3
|