Graduate School of Economics
YONEDA Tsuyoshi

Books and Other Publications

1. 数理流体力学への招待
米田 剛 (Sole author)
サイエンス社 2020.1

Papers

1. Locality of Vortex Stretching for the 3D Euler Equations (Peer-reviewed)
Yuuki Shimizu, Tsuyoshi Yoneda
Journal of Mathematical Fluid Mechanics Vol.25,No.1 2023.1
doi Link Link
2. On maximum enstrophy dissipation in 2D Navier–Stokes flows in the limit of vanishing viscosity (Peer-reviewed)
Pritpal Matharu, Bartosz Protas, Tsuyoshi Yoneda
Physica D: Nonlinear Phenomena Vol.441,pp.133517 2022.12
doi
3. Mathematical reformulation of the Kolmogorov–Richardson energy cascade in terms of vortex stretching (Peer-reviewed)
Tsuyoshi Yoneda, Susumu Goto, Tomonori Tsuruhashi
Nonlinearity Vol.35,No.3,pp.1380-1401 2022.3
doi Link Link
4. Self-similar hierarchy of coherent tubular vortices in turbulence (Peer-reviewed)
Tomonori Tsuruhashi, Susumu Goto, Sunao Oka, Tsuyoshi Yoneda
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol.380,No.2226 2022
doi
5. Characterization of Three-dimensional Euler flows supported on finitely many Fourier modes (Peer-reviewed)
Nobu Kishimoto, Tsuyoshi Yoneda
J. Math. Fluid Mech. Vol.24,pp.74- 2022
6. Arnold stability and Misiolek curvature (Peer-reviewed)
Taito Tauchi, Tsuyoshi Yoneda
Monatshefte fur Mathematik Vol.199,pp.411-429 2022
7. Vortex stretching and enhanced dissipation for the incompressible 3D Navier–Stokes equations (Peer-reviewed)
In-Jee Jeong, Tsuyoshi Yoneda
Mathematische Annalen Vol.380,No.3-4,pp.2041-2072 2021.8
doi Link Link
8. Quasi-streamwise vortices and enhanced dissipation for the incompressible 3D Navier-Stokes equations (Peer-reviewed)
In-Jee Jeong, Tsuyoshi Yoneda
Proceedings of AMS Vol.150,pp.1279-1286 2021.7
doi
9. Enstrophy dissipation and vortex thinning for the incompressible 2D Navier-Stokes equations (jointly worked) (Peer-reviewed)
I.-J. Jeong, T. Yoneda
Nonlinearity Vol.34,pp.1837- 2021.2
10. Three-dimensional Euler flow generating instantaneous vortex stretching and related zeroth law (jointly worked) (Peer-reviewed)
Tsuyoshi Yoneda, In-Jee Jeong
Nagare: Journal of Japan Society of Fluid Mechanics Vol.39,pp.230-239 2020.8
11. A local instability mechanism of the Navier-Stokes flow with swirl on the no-slip flat boundary (jointly worked) (Peer-reviewed)
L. Lichtenfelz, T. Yoneda
Journal of Mathematical Fluid Mechanics Vol.21,pp.20- 2019.3
12. New applications of Campanato spaces with variable growth condition to the Navier-Stokes equation (jointly worked) (Peer-reviewed)
E. Nakai, T. Yoneda
Hokkaido Mathematical Journal Vol.48,pp.99-140 2019.2
13. Global solvability of the rotating Navier-Stokes equations with fractional Laplacian in a periodic domain (jointly worked) (Peer-reviewed)
N. Kishimoto, T. Yoneda
Mathematische Annalen Vol.372,pp.743-779 2018.10
14. Continuity of the solution map of the Euler equations in Holder spaces and weak norm inflation in Besov spaces (jointly worked) (Peer-reviewed)
G. Misiolek, T. Yoneda
Transactions of the American Mathematical Society Vol.370,pp.4709-4730 2018.7
15. Global well posedness for a two-fluid model (jointly worked) (Peer-reviewed)
Y. Giga, S. Ibrahim, S. Shen, T. Yoneda
Differential and Integral Equations Vol.31,pp.187-214 2018.3
16. A number theoretical observation of a resonant interaction of Rossby waves (jointly worked) (Peer-reviewed)
N. Kishimoto, T. Yoneda
Kodai Mathematical Journal Vol.40,No.1,pp.16-20 2017.3
doi
17. Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner (jointly worked) (Peer-reviewed)
T. Itoh, H. Miura, T. Yoneda
Journal of Mathematical Fluid Mechanics Vol.18,pp.531-537 2016.9
18. A local analysis of the axi-symmetric Navier-Stokes flow near a saddle point and no-slip flat boundary (jointly worked) (Peer-reviewed)
P-Y. Hsu, H. Notsu, T. Yoneda
Journal of Fluid Mechanics Vol.794,pp.444-459 2016.4
19. An ODE for boundary layer separation on a sphere and a hyperbolic space (jointly worked) (Peer-reviewed)
C-H. Chan, M. Czubak, T. Yoneda
Physica D Vol.282,pp.34-38 2014.7
20. On the stationary Navier-Stokes flow with isotropic streamlines in all latitudes on a sphere or a 2D hyperbolic space (jointly worked) (Peer-reviewed)
C-H Chan, T. Yoneda
Dynamics of Partial Differential Equations Vol.10,pp.209-254 2013.9
21. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space (jointly worked) (Peer-reviewed)
D. Chae, T. Yoneda
Journal of Mathematical Analysis and Applications Vol.405,pp.706-710 2013.9
22. Streamlines concentration and application to the incompressible Navier-Stokes equations (jointly worked) (Peer-reviewed)
E. Foxall, S. Ibrahim, T. Yoneda
Tohoku Mathematical Journal Vol.65,pp.273-279 2013.4
23. Resonant interaction of Rossby waves in two-dimensional flow on a β plane (jointly worked) (Peer-reviewed)
M. Yamada, T. Yoneda
Physica D Vol.245,No.1,pp.1-7 2013.2
doi Link
24. Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data (jointly worked) (Peer-reviewed)
S.Ibrahim, T. Yoneda
Journal of Mathematical Sciences, the University of Tokyo Vol.20,pp.1-25 2013.1
25. Local solvability and loss of smoothness of the Navier-Stokes-Maxwell equations with large initial data (jointly worked) (Peer-reviewed)
S. Ibrahim, T. Yoneda
Journal of Mathematical Analysis and Applications Vol.396,pp.555-561 2012.12
26. Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects (jointly worked) (Peer-reviewed)
H. Koba, A. Mahalov, T. Yoneda
Advances in Mathematical Sciences and Applications Vol.22,pp.61-90 2012.11
27. On possible isolated blow-up phenomena and regularity criterion of the 3D Navier-Stokes equation along the streamlines (jointly worked) (Peer-reviewed)
C-H. Chan, T. Yoneda
Methods and Applications of Analysis Vol.19,pp.211-242 2012.9
28. Bilinear estimates in dyadic BMO and the Navier-Stokes equations (jointly worked) (Peer-reviewed)
E. Nakai, T. Yoneda
Journal of the Mathematical Society of Japan Vol.64,pp.399-422 2012.6
29. Ill-posedness examples for the quasi-geostrophic and the Euler equations, (jointly worked) (Peer-reviewed)
G. Misiolek, T. Yoneda
Contemporary Mathematics, American Mathematical Society, Providence, RI Vol.584,pp.251-258 2012.2
30. On a bound for amplitudes of Navier-Stokes flow with almost periodic initial data (jointly worked) (Peer-reviewed)
Y. Giga, A. Mahalov, T. Yoneda
Journal of Mathematical Fluid Mechanics Vol.13,pp.459-467 2011.9
31. On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations (jointly worked) (Peer-reviewed)
P. Konieczny, T. Yoneda
Journal of Differential Equations Vol.250,pp.3859-3873 2011.5
32. Long-time solvability of the Navier-Stokes equations in a rotating frame with spatially almost periodic large data (Peer-reviewed)
T. Yoneda
Archive for Rational Mechanics and Analysis Vol.200,pp.225-237 2011.4
33. Riesz transforms on generalized Hardy spaces and a uniqueness theorem for the Navier-Stokes equations (jointly worked) (Peer-reviewed)
E. Nakai, T. Yoneda
Hokkaido Mathematical Journal Vol.40,pp.67-88 2011.2
34. On the two-dimensional Euler equations with spatially almost periodic initial data (jointly worked) (Peer-reviewed)
Y. Taniuchi, T. Tashiro, T. Yoneda
Journal of Mathematical Fluid Mechanics Vol.12,pp.594-612 2010.12
35. Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO^{-1} (Peer-reviewed)
T. Yoneda
Journal of Functional Analysis Vol.258,pp.3376-3387 2010.5
36. Construction of solutions for the initial value problem of a functional-differential equation of advanced type (jointly worked) (Peer-reviewed)
E. Nakai, T. Yoneda
Aequationes mathematicae Vol.77,pp.259-272 2009.6
37. Quarkonial decomposition suitable for functional-differential equations of delay type (jointly worked) (Peer-reviewed)
Y. Sawano, T. Yoneda
Mathematische Nachrichten Vol.281,No.12,pp.1810-1822 2008.12
doi
38. On time analyticity of the Navier-Stokes equations in a rotating frame with spatially almost periodic data (jointly worked) (Peer-reviewed)
Y. Giga, H. Jo, A. Mahalov, T. Yoneda
Physica D Vol.237,pp.1422-1428 2008.7
39. Calderon-Zygmund operators on amalgam spaces and in the discrete case (jointly worked) (Peer-reviewed)
N. Kikuchi, E. Nakai, N. Tomita, K. Yabuta, T. Yoneda
Journal of Mathematical Analysis and Applications Vol.335,pp.198-212 2007.11
40. On the functional-differential equation of advanced type f'(x)=af(λx), λ>1, with f(0)=0 (Peer-reviewed)
T. Yoneda
Journal of Mathematical Analysis and Applications Vol.332,pp.487-496 2007.8
41. On the Young theorem for amalgams and Besov spaces (jointly worked) (Peer-reviewed)
Y. Sawano, T. Yoneda
International Journal of Pure and Applied Mathematics Vol.36,pp.197-205 2007.4
42. On the functional-differential equation of advanced type f'(x)=af(2x) with f(0)=0 (Peer-reviewed)
T. Yoneda
Journal of Mathematical Analysis and Applications Vol.317,pp.320-330 2006.5
43. Spline functions and n-periodic points (Peer-reviewed)
T. Yoneda
Transactions of the Japan Society for Industrial and Applied Mathematics Vol.15,No.3,pp.245-252 2005.9
doi Link

▼display all

Presentations

No. Name of subject/Conference Name Year Site
1. Mathematical reformulation of the Kolmogorov-Richardson energy cascade in terms of vortex stretching(日本流体力学会 年会2021)
Holding date :
Presentation date : 2021.9.21
東京大学生産技術研究所(オンライン)
2. 流れのあらわし方(流体若手夏の学校2021)
Holding date :
Presentation date : 2021.8.28
オンライン
3. Mathematical reformulation of the Kolmogorov-Richardson energy cascade in terms of vortex stretching(Sapporo symposium)
Holding date :
Presentation date : 2021.8.10
Hokkaido University (online)
4. Quasi-streamwise vortices and enhanced dissipation for the incompressible 3D Navier-Stokes equations(analysis and PDEs seminar)
Holding date :
Presentation date : 2021.1.18
Cergy Paris Universite (online)
5. Vortex stretching and enhanced dissipation for the incompressible 3D Navier-Stokes equations(International Workshop on Multi-Phase Flows: Analysis, Modelling and Numerics)
Holding date :
Presentation date : 2020.12.1
早稲田大学(オンライン)
6. On an instantaneous vortex-stretching and certain stationary flow from the zeroth-law point of view(日本流体力学会 年会2019)
Holding date :
Presentation date : 2019.9.13
電気通信大学
7. Recent topics on well-posedness and stability of incompressible fluid and related topics(Summer Graduate School)
Holding date :
Presentation date : 2019.7.22
Mathematical Sciences Research Institute (MSRI), Berkeley, USA
8. A remark on the zeroth law and instantaneous vortex stretching on the incompressible 3D Euler equations(Kyoto University Applied Mathematics Seminar)
Holding date :
Presentation date : 2019.5.21
Kyoto University
9. Instantaneous vortex stretching and energy cascade on the incompressible 3D Euler equations(KIAS workshop, Mathematics of Fluid Motion II)
Holding date :
Presentation date : 2018.12.26
KIAS, Korea
10. Instantaneous vortex-stretching and anomalous dissipation on the 3D Euler equations(日本流体力学会 年会2018)
Holding date :
Presentation date : 2018.9.3
大阪大学
11. Instantaneous vortex-stretching and anomalous dissipation on the 3D Euler equations(The 12th AIMS Conference on Dynamical Systems)
Holding date :
Presentation date : 2018.7.5
Taipei, Taiwan
12. Instantaneous vortex-stretching and anomalous dissipation on the 3D Euler equations(2018 International Conference on Mathematical Fluid Dynamics School of Mathematics and Information Science)
Holding date :
Presentation date : 2018.5.25
Henan Polytechnic University, China

▼display all

Awards

No. Award name Year
1. The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology:The Young Scientists' Prize 2014.4
2. MSJ Tatebe Katahiro Prize 2012.9
3. Inoue Research Award for Young Scientists 2012.2
4. Chairman Award for Outstanding Ingenuity and Creativity 2009.3

Research Projects

No. Research subject Research item(Awarding organization, System name) Year
1. 物理と数学の協働による乱流クロージャー問題解決に向けた機械学習理論の創出
基盤研究(A)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2024.4 - 2029.3
2. 平均振動量・増大度が一様でない関数空間の理論と応用
基盤研究(C)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2021.4 - 2026.3
3. 物理と数学の協働によるNavier-Stokes乱流のエネルギーカスケードの解明
基盤研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2020.4 - 2024.3
4. Creation of new turbulence analysis method by using diffeomorphism groups of Riemannian geometry
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
( Awarding organization: Japan Society for the Promotion of Science System name: Grants-in-Aid for Scientific Research )
2019 - 2021
5. 曲面上の渦力学:曲面の幾何がもたらす新しい流体運動の数理科学
基盤研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2018.4 - 2022.3
6. 粘弾性流体に特有な渦の数理解析
基盤研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2018.4 - 2022.3
7. 流体方程式における非共鳴波動相互作用
基盤研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2017.4 - 2022.3
8. 数学的アプローチによる様々な流体物理現象の解明
若手研究(A)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2017.4 - 2020.3
9. 実解析・調和解析に由来する関数空間の理論の深化と応用
基盤研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2015.4 - 2020.3
10. 流体方程式に対する実解析的手法および数値計算
若手研究(B)
( Awarding organization: 日本学術振興会 System name: 科学研究費助成事業 )
2013.4 - 2016.3

▼display all